
PostgreSQL on AWS RDS: tips and tricks.

Dmitry Vasiliev, coins.ph

 About the company

● Coins.ph - mobile wallet

● Using PostgreSQL since 2014 in AWS

● Dev/Ops: a Russian-speaking team

 Modern cloud infrastructure

 How you can use AWS

● EC2: classic virtual machines

○ Including I3 instances with fast local NVME ephemeral storage

● EBS: network block device

○ Provisioned IOPS SSD (io1): up to 64k IOPS, 1-2ms write latency

○ General Purpose SSD (gp2): 3 IOPS/Gb up to 16k IOPS, up to 10ms write latency

○ Throughput Optimized HDD (st1) && Cold HDD (sc1)

● RDS PostgreSQL

 PostgreSQL in AWS

1. AWS EC2 (EBS storage or I3 instances)

2. PostgreSQL in kubernetes

3. PostgreSQL AWS RDS

4. Combination of all these methods

 Some terms: RDS Multi-AZ

Multi-AZ: automatic failover

1. On the face of it сan be thought of as block device replication

2. Hardware is reserved, but PostgreSQL service is not running

3. Failover is managed by DNS record (TTL=5s)

4. From our experience failover works: once a month per 10 instances

 AWS EC2 (cons)

1. Hardware. Not cheaper than Multi-AZ on AWS RDS:

a. Instances for: master, sync replica and async replica

b. backup storage and backup test resources

2. Manpower. Harder to maintain:

a. Failover

b. Backup

 PostgreSQL in kubernetes (cons)

1. Large node instances in kubernetes are required

2. There are problems with “huge_pages = on” (didn’t check)

a. On RDS we experienced problems on large instances with “huge_pages = off”

3. The complexity of the solution

 RDS vs Self-Hosted (cons)

1. No superuser access

2. No streaming replication, except “Read Replica”

3. No access to the operating system (strace, gdb)

4. Single storage for all data: tablespaces, wal, server log.

 AWS RDS PostgreSQL (pros):

1. SLA 99.95% (*) : 22 minutes per month (higher in real life)

2. Backup: 30 days PITR, (but recovery speed is slow (**): ~ 10MB/s)

3. Failover: 1-5 minutes (depends on instance size)

4. No superuser: stable server versions and extensions

(*) through monthly bill, in fact, may be lower
(**) we are talking about the speed of applying WAL-archive

 Let's talk about expectations vs reality

 Tools

 Tools: terraform

1. aws_db_instance - Encryption, Backup retention policy, ...

2. aws_db_parameter_group - PostgreSQL configuration, value is template (*)

3. data source aws_db_instance - Inventory

4. writing custom providers

(*) https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

https://www.terraform.io/docs/providers/aws/r/db_instance.html
https://www.terraform.io/docs/providers/aws/r/db_parameter_group.html
https://www.terraform.io/docs/providers/aws/d/db_instance.html
https://www.terraform.io/docs/extend/writing-custom-providers.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

 Log and Events

 Log and Events

1. Web interface is terrible

2. I strongly recommend publishing logs to CloudWatch:

a. you can download and get POSIX access to files

b. you can use additional CloudWatch functionality

 CloudWatch instruments

 https://github.com/lucagrulla/cw

https://github.com/lucagrulla/cw

 cw examples: time seek

cw tail -f /aws/rds/instance/<instance-name>/postgresql -b

'2020-01-20T00:00:00’

cw /aws/rds/instance/<instance-name>/postgresql -b ‘20m’ -e

‘10m’

 cw examples: filter (aka grep), text search

Get ERROR|FATAL messages:

cw /aws/rds/instance/<instance-name>/postgresql \

-g '?ERROR ?FATAL'

 https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

 cw examples: filter (aka grep), slow queries

Get queries that took longer than 2 seconds:

cw /aws/rds/instance/<instance-name>/postgresql \

-g '[year, time, connection_info, x, duration > 2000, ...]'

 https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html

 Log Analysis: PgBadger and useful info

1. Download 5-minute segments from CloudWatch

2. Run PgBadger for incremental update

3. We also filter various useful information from this small segment: information

about failed authentications and other important server messages

4. GoTo #1

 Basic system metrics

1. Basic system metrics: CPU, Disk, Network:

a. IO latency, IOPS, Queue Depth

b. CPU usage

2. Storage burst information (gp2)*: 3 iops/gb with burst (limited time) to 3k iops

3. CPU burst information (Tx-instances)

(*) https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html

 Enhanced system metrics

1. Disk: throughput (MB/s), latency, iostat utilization

2. CPU: la, process information, usage by type (system, user, wait, ...)

3. Memory: usage by type (buffer, dirty, hugepages, ...)

 System metrics monitoring tool

https://github.com/percona/rds_exporter

https://github.com/percona/rds_exporter

 Metrics provided by PostgreSQL monitoring tool

https://github.com/vadv/pg_gatherer

https://github.com/vadv/pg_gatherer

 Metrics that helped me out more than once

1. System statistics snapshots:

a. pg_stat_activity (long queries, waits)

b. pg_locks

c. pg_user_tables (seq scans, vacuum, relpages)

2. Buffer pool by relation

 Pg_gatherer: iops + pg_stat_activity snapshot

 Pg_gatherer: sequential scans

 Sequential scans on “small tables”

 http://www.interdb.jp/pg/pgsql08.html

The ring buffer is not used for “small” (shared_buffers/4) tables.

The target table is completely immersed into shared_buffers.

Queries are executed quickly, and they are not visible in the slow query log.

Perhaps it would be better if PostgreSQL used OS PageCache.

http://www.interdb.jp/pg/pgsql08.html

 Balancer

There are not many options:

1. PgBouncer (not without problems, but good old one)

2. Odyssey (too novel, no PAUSE functionality)

 Balancer: PgBouncer

1. EC2 (pros)

a. Stability (PODs are often re-scheduled to another k8s nodes)

2. Kubernetes (pros)

a. Сonfig is located closer to apps

b. Scaling

 KuBouncer: PgBouncer + Kubernetes agent

1. Monitors Kubernetes Secret updates (updated via terraform or manually)

2. Monitors database availability

3. Exposes metrics to Prometheus

4. Performs “Graceful Shutdown”

 KuBouncer: Graceful shutdown

 KuBouncer: automation

1. Сonfig is easily created by terraform provider

2. Database per application: each application uses own virtual database:

applicationname_databasename

3. Temporary virtual user is created for each virtual database

 Data analytics

1. We use logical replication to collect data from a variety of instances in one

instance (Transmission Point)

2. TP deployed in EC2 (two instance: leader && backup)

3. We give RO access to the TP instance for Data analytics team and this is no
longer our headache (Debezium, Airflow, AWS Athena, ...)

 Data analytics

 Logical replication

1. Initial copy of logical replication is an expensive operation for both: publisher
and subscriber

2. We have developed a way to create a copy of subscriber using
pg_basebackup (*)

(*) Based on: https://medium.com/avitotech/recovery-use-cases-for-logical-replication-in-postgresql-10-a1e6bab03072

https://medium.com/avitotech/recovery-use-cases-for-logical-replication-in-postgresql-10-a1e6bab03072

 Cheap way to create a copy of a logical subscriber

1. Backup: pg_basebackup -h Leader -U replica -W -D data -X stream -R

2. Backup: select pg_create_logical_replication_slot('replica_slot_name', 'pgoutput')
3. Leader: alter subscription sub_name disable;
4. Leader (make snapshot):
with subscriptions (select 'pg_'||(oid::bigint)::text as external_id, subname, subconninfo,
subdbid from pg_subscription)
select s.subname, s.subconninfo, status.remote_lsn, d.datname
from pg_replication_origin_status status
inner join subscriptions s on s.external_id = status.external_id
inner join pg_database d on d.oid = s.subdbid;

 Cheap way to create a copy of a logical subscriber

5. Backup: pg_ctl promote -D /var/lib/pgsql/11/data
6. Backup: create subscription … publication tp_pub with (enabled=false, copy_data=false,
create_slot=false);
7. Backup (from 4):
with subscriptions as (select 'pg_'||(oid::bigint)::text as external_id from pg_subscription
where subname = “replica_slot_name”)
select pg_replication_origin_advance(s.external_id, remote_lsn) from subscriptions s;
8. Backup && Leader: alter subscription ... enable;

 Tricks: Row-Level locks

Row-level locks are extremely slow on RDS, possibly due to the increased
write latency on Multi-AZ.

To reduce numbers of failed or hot row-level locks, we increased the total
number of locks: we added an additional advisory lock before each row-level
lock.

 Tricks: Row-Level locks

select id from “order” for
update where id = “X” nowait;

select
pg_try_advisory_xact_lock(“X”);

select id from “order” for
update where id = “X” nowait;

 Tricks: Security

Custom terraform provider:

1. alter database X owner owner_role;

2. create role rotated_role with login valid until ‘1 month’

in role owner_role;

3. alter rotated_role set role to owner_role;

 Tricks: Observability in Kubernetes

Not all applications are connected via PgBouncer, for these applications we
set PGAPPNAME to POD Name:

 RDS Problems

Rare IO problems:

Index Cond: ((x.user_id)::text = ‘x'::text)

 Filter: ((x.y)::text ~~ 'z%'::text)

 Buffers: shared hit=3 read=1

 I/O Timings: read=12899.186

 RDS Problems

Sometimes you have to change the instance type to run away

from troublesome host

 RDS Problems

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ModifyPostgreSQLInstance.html

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ModifyPostgreSQLInstance.html

Thank you!

Questions?

